Type: \(\displaystyle B^{1}_2+A^{1}_1\) (Dynkin type computed to be: \(\displaystyle B^{1}_2+A^{1}_1\))
Simple basis: 3 vectors: (2, 2, 2, 2, 1), (-1, 0, 0, 0, 0), (0, 0, 2, 2, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: B^{1}_2
simple basis centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of k-submodules of g: 21
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{3}}+V_{\omega_{2}+\omega_{3}}+V_{2\omega_{2}}+4V_{\omega_{3}}+4V_{\omega_{2}}+10V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, -2, -1)(0, 0, 0, -2, -1)g_{-13}-2\varepsilon_{4}
Module 21(0, 0, 0, -1, -1)(0, 0, 0, -1, -1)g_{-9}-\varepsilon_{4}-\varepsilon_{5}
Module 31(0, 0, 0, 0, -1)(0, 0, 0, 0, -1)g_{-5}-2\varepsilon_{5}
Module 41(0, 0, 0, -1, 0)(0, 0, 0, -1, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 52(0, 0, -1, -2, -1)(0, 0, 1, 0, 0)g_{3}
g_{-16}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 61(0, 0, 0, 1, 0)(0, 0, 0, 1, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 71(0, 0, 0, 0, 1)(0, 0, 0, 0, 1)g_{5}2\varepsilon_{5}
Module 84(0, -1, -1, -2, -1)(0, 1, 1, 0, 0)g_{7}
g_{10}
g_{-20}
g_{-18}
\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 92(0, 0, -1, -1, -1)(0, 0, 1, 1, 0)g_{8}
g_{-12}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 101(0, 0, 0, 1, 1)(0, 0, 0, 1, 1)g_{9}\varepsilon_{4}+\varepsilon_{5}
Module 114(0, -1, -1, -1, -1)(0, 1, 1, 1, 0)g_{11}
g_{14}
g_{-17}
g_{-15}
\varepsilon_{2}-\varepsilon_{5}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
Module 122(0, 0, -1, -1, 0)(0, 0, 1, 1, 1)g_{12}
g_{-8}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 131(0, 0, 0, 2, 1)(0, 0, 0, 2, 1)g_{13}2\varepsilon_{4}
Module 144(0, -1, -1, -1, 0)(0, 1, 1, 1, 1)g_{15}
g_{17}
g_{-14}
g_{-11}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
Module 152(0, 0, -1, 0, 0)(0, 0, 1, 2, 1)g_{16}
g_{-3}
\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
Module 164(0, -1, -1, 0, 0)(0, 1, 1, 2, 1)g_{18}
g_{20}
g_{-10}
g_{-7}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
Module 173(0, 0, -2, -2, -1)(0, 0, 2, 2, 1)g_{19}
h_{5}+2h_{4}+2h_{3}
g_{-19}
2\varepsilon_{3}
0
-2\varepsilon_{3}
Module 188(0, -1, -2, -2, -1)(0, 1, 2, 2, 1)g_{21}
g_{22}
g_{2}
g_{-6}
g_{6}
g_{-2}
g_{-22}
g_{-21}
\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 1910(0, -2, -2, -2, -1)(0, 2, 2, 2, 1)g_{23}
g_{24}
g_{-1}
g_{25}
-h_{1}
h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}
g_{-25}
g_{1}
g_{-24}
g_{-23}
2\varepsilon_{2}
\varepsilon_{1}+\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
2\varepsilon_{1}
0
0
-2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
Module 201(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{4}0
Module 211(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{5}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 11
Heirs rejected due to not being maximally dominant: 6
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 6
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by B^{1}_2
Potential Dynkin type extensions: B^{1}_2+A^{1}_2, 2B^{1}_2, B^{1}_2+2A^{1}_1,